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Abstract-Simplifying approximations, together with dimensional analysis, have been used to obtain a 
formula for the relation between the heat flux and vapour-side temperature difference for condensation on 
low, integral-finned tubes. The final result involves two unknown (disposable) constants which have been 
determined from heat-transfer data. The resulting equation is found to be in satisfactory agreement with 
experimental data from I1 investigations with various condensing fluids and a range of fin and tube 

geometries. 

INTRODUCTION 

SURFACE tension, in the presence of changing cur- 
vature of the interface between vapour and conden- 
sate, gives rise to a pressure gradient which influences 
the motion of the condensate film. For a horizontal 
smooth tube, changes in interface curvature are, 
except near the bottom of the tube, small and the 
effect of surface tension is weak, as is evidenced by 
the success of the Nusselt [l] theory. For a finned 
tube, however, abrupt changes in curvature of the 
condensate surface occur near the tips and roots of 
the fins. At the same time the presence of fins on a 
horizontal tube leads to capillary retention of liquid 
between fins on the lower part of the tube. Thus the 
presence of fins on a condenser tube affects the heat 
transfer in three ways : (1) as in single phase heat 
transfer, the fins provide additional heat-transfer sur- 
face, (2) the surface tension-induced pressure gradient 
in the condensate film assists drainage from parts of 
the surface, and thereby enhances the heat transfer by 
reducing the film thickness, and (3) capillary retention 
of condensate adversely affects the heat transfer. 

ENHANCEMENT RATIO 

It is convenient to compare the performance of 
finned and smooth tubes in terms of an ‘enhancement 
ratio’, i.e. heat-transfer coefficient for the finned tube 
divided by heat-transfer coefficient for smooth tube, 
both based on the smooth-tube area. Thus, in design 
calculations, one would treat a finned tube as a 
smooth tube with vapour-side, heat-transfer co- 
efficient equal to the smooth-tube (e.g. Nusselt) value 
multiplied by the enhancement ratio. However, as 
discussed in Masuda and Rose [2, 31, it is important 
to define enhancement ratio carefully. In conden- 
sation, the heat flux does not vary linearly with 

vapour-to-surface temperature difference, i.e. the 
heat-transfer coefficient is not independent of heat 
flux or temperature difference. Moreover, there is no 
reason to presume that the heat flux-temperature 
difference relation will be similar for a finned and 
smooth tube. An enhancement ratio can only strictly 
be defined at a particular temperature difference or 
heat flux (same for both smooth and finned tube). 
However, experiment has shown that for conden- 
sation on low-finned tubes, the heat flux-temperature 
difference dependence is generally not far from 
q cc AT3j4 as given by the Nusselt theory for a smooth 
tube. If this were strictly true for both finned and 
smooth tube, the enhancement ratio would be inde- 
pendent of AT or q. This is particularly convenient 
since we can then ascribe an enhancement ratio to a 
given tube (and condensing fluid) without specifying 
AT or q. As pointed out by Masuda and Rose [2, 31, 
it is important to note that the enhancement ratio at 
the same AT, is not the same as the enhancement ratio 
at the same q. 

Defining enhancement ratio at the same AT by 

and enhancement ratio at the same q by 

%“mJ tube WT) tinnedtube A Tmooth tube 
E = _________ = 

Y 
(q/AT) = A Tfinned tube 

(2) 
u,mooth tube smoothtube 

where the heat flux and heat-transfer coefficient are 
based, in both bases, on the smooth tube surface area. 
E~~ and E, will depend in general on AT and q. respec- 
tively. However, if q cc AT314 for both smooth and 
finned tubes, it is evident that &A= and cy are inde- 
PendentofATandqandthat 

Ey = (&bT)4’3. (3) 
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NOMENCLATURE 

A constant in equation (29) r, radius at fin root 
B constant in equation (29) i r+S 
B, value of B for fin flank s spacing between fin flanks at fin root 

B, constant in equation (47) Tr defined in equation (43) 

BS value of B for interlin tube surface T, defined in equation (45) 

B, value of B for fin tip T, defined in equation (41) 
b spacing between fin flanks at fin tip i fin thickness at fin tip 
C constant in equation (19) k condensation volume flux 
d tube diameter “Y,X,,X~ linear dimension, distance along 

d” diameter at fin tip surface 

d, diameter at fin root “K appropriate linear dimension for 

;: 

defined in equation (16) condensate flow governed by gravity 

.i fraction of unwooded part of fin flank .x, appropriate linear dimension for 
blanked by retained condensate at fin condensate flow governed by surface 
root tension. 

.L fraction of unflooded part ofinterfin tube 
surface blanked by retained condensate Greek symbols 
at lin root 01 heat-transfer coefficient based on smooth 

Gr defined in equation (44) tube area at fin root diameter 

G, defined in equation (46) B half-angle at fin tip, i.e. angle between fin 

G, defined in equation (42) flank and plane normal to tube axis 

9 specific force of gravity A d/r 

h radial height of fin AT vapour-to-surface temperature difference 
h” local vertical fin height 6 condensate film thickness 

h,, effective mean vertical fin height s/W enhancement ratio (heat-transfer 
h 

f” 
specific enthalpy of evaporation coefficient for finned tube divided by 

alp& heat-transfer coefficient for smooth tube, 
K PkA T/r 3pP,@r~ both based on smooth tube area at fin 
k thermal conductivity of condensate root diameter and for same AT) 
L height of vertical plane surface % enhancement ratio (heat-transfer 
n constant in equation (19) coefficient for finned tube divided by 

Er 

pressure heat-transfer coefficient for smooth tube, 
total heat-transfer rate over one pitch both based on smooth tube area at fin 
length for a finned tube root diameter and for same 4) 

QS total heat-transfer rate to smooth tube B angle measured from top of tube 
over a length equal to one pitch length of p viscosity of condensate 
finned tube c(O) function defined in equation (25f and 

Y heat flux given approximately in equation (25) 

4f heat flux for fin tlanks P density of condensate 

VT heat flux for tube surface between fins PV density of vapour 
qsmooth heat Hux for smooth tube p” P-P” 

Yt heat flux for fin tip surface tension 
r radius of smooth tube condensate retention or ‘flooding’ angle 

rC radius of cur~dture of condensate surface measured from top of tube. 

Thus, for a value of eb, of I. such as may be found 
with refrigerants, E@ is in excess of 13. 

In the presence of appreciable vapour velocity, the 
enhancement ratio is a less useful quantity since 4 is 
not proportional to a power of AT and vapour vel- 
ocity affects the heat-transfer coefficient for a smooth 
tube more strongly than for a finned tube. Thus the 
enhancement ratio, for a given vapour velocity (same 
for finned and smooth tube), would decrease with 
increasing vapour velocity. However, upper and lower 
bounds for the heat-transfer coefficient for a finned 

tube in the presence of significant vapour velocity are 
given by multiplying the quiescent-vapour enhance- 
ment ratio by the forced- and free-convection. 
smooth-tube coefficients. respectively. 

BEATTY-KATZ [4] MODEL 

This early model ignores surface tension effects and 
treats both the fin flanks and the cylindrical interfin 
tube surface using the Nusselt approach with con- 
densate flow on the vertical plane, and horizontal 
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cylindrical, surfaces controlled by gravity and 

viscosity. The Beatty and Katz model can give accept- 
able results for low surface tension fluids. This is 
partly because surface tension effects are small and 

partly because the condensate retention and drainage 
enhancing effects of surface tension cancel each other 
to some extent. 

Beatty and Katz [4] gave their result for a finned 
tube in the form of a Nusselt expression for a smooth 
tube with an ‘equivalent diameter’. The Beatty and 
Katz approach can be used instead to obtain an 
expression for the enhancement ratio. Thus for a tube 
with rectangular section fins (b = s) the enhancement 
ratio E&~ (ratio of the heat-transfer coefficients for the 

finned and smooth tubes, both based on the smooth 

tube area at fin root diameter, d,, and for the same 
AT) is given by 

&AT = 
q,(d~-d,2)/2+q,d,t+q,d,s 

qsmootdr (b + t) 
(4) 

where qf. qs and qt are the mean heat fluxes for the fin 
flanks, interfin tube surface and fin tip, respectively. 

Taking q8 = qsmooth and treating these surfaces on the 
basis of the Nusselt theory with negligible temperature 

drop in the fins for high conductivity, low-fin tubes, 
one obtains 

where h, is the mean effective plate height for the fin 
flanks. 

For low fins, when do z d, e d, equation (5) 
becomes 

(6) 

The ‘proper mean value’ of the vertical fin height h, 

used by Beatty and Katz approximates, for low fins. 
to 

h, = nh. (74 

For low fins (h cc dr), this approximates to twice the 
average value of the certical height from fin root to 
fin tip. If condensate drains from the fin flanks to the 
interfin tube surface and thence to the lowest part of 
the tube before draining along the flanks and leaving 

the tube, a more appropriate mean vertical fin height 
would be half the Beatty and Katz value, i.e. 

and 

h, = nh/2. (7b) 

Since h, occurs to the power l/4 in equations (5) 
and (6), the value of &A7 is less than 20% higher when 
using h, from equation (7b) rather than from equation 

(7a). (‘4 

Note that equations (5) and (6) contain only geo- 
metric variables so that, according to the Beatty and 

FIG. 1. Configuration of retained liquid. Reproduced from 
Masuda and Rose [8]. 

Katz model, the enhancement ratio, for a given fin 
and tube geometry, is the same for all fluids. 

CONDENSATE RETENTION 

Equation (6) shows that the Beatty-Katz model 
predicts that E~~ increases continuously as the interfin 
space decreases. In practice, there exists an optimum 
(for fixed values of the other dimensions and for a 
given fluid) below which Ear decreases due to increas- 
ing condensate retention (neglected in the Beatty- 

Katz model). 
For trapezoidal-section low fins, with fin height 

greater than half the distance between adjacent fin tips 

(h > b/2) an equation for calculating the retention 
angle 4, i.e. the angle measured from the top of the 

tube to the position at which the whole of the interfin 
space is filled with retained liquid, has been obtained 
by Honda et al. [5] : 

4 = cos- ’ { (40 cos /l/pgbd,) - 1). (8) 

(Note that when o cos /l/pgbd, > 0.5 the interfin space 
is fully flooded and 4 should be set to zero.) Virtually 
the same result was obtained independently by Rudy 

and Webb [6,7]. Equation (8) has been well verified 
experimentally by several investigators. 

Equation (8) was also obtained as a special case, in 
a more general treatment by Masuda and Rose [8], 
who demonstrated, in addition, that liquid is also 
retained in the form of ‘wedges’ at the fin roots on the 

upper part of a tube previously regarded as unflooded 
(see Fig. 1). 

As shown by Masuda and Rose [8] and illus- 
trated in Fig. 1, parts of the unflooded fin flank and 
interfin tube space are effectively insulated by retained 
condensate. Masuda and Rose [8] showed that, for 
parallel-side fins with sharp-edged fin roots, the frac- 
tions fF and fs, of the unflooded parts of the flank 

and interfin tube space which are blanked can be 
approximated by 
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For trapezoidal fins with sharp-edged fin roots, it is 
readily shown that _fi and .A become : 

.fE = 
1 -tan (b/2) 20 cos /l tan ($/2) .___ . . 
1 ftan (8/2) wdh 4 

(11) 

.fi = 
I -tan (/I/2) 40 tan (4/2) 

l+tan(8/2)‘pgd,s 
. ___._.~ 

4 
(12) 

Note that owing to approximations in the derivations 

of,fi and j;, the quantities given by equations (9)-( 12) 
can, in some circumstances, marginally exceed unity. 
In these cases the relevant quantity should be set to 
unity. Note also that for fins with appropriately 
radiusedt fin roots (see Masuda and Rose [8]), ,f; and ,f; 
would be zero and estimates needed of the appropriate 

values to assign to h and s. 

SURFACE TENSION-INDUCED PRESSURE 

GRADIENT 

More complicated than condensate retention is the 

effect of surface tension on the motion of the con- 
densate film highlighted by Gregorig [9] in relation to 
condensation on a fluted surface. Change in surface 
curvature along a condensate film results in cor- 
responding changes in the pressure drop across the 
vapour-liquid interface. This, in turn, gives rise to a 
pressure gradient in the film. In the presence of sharp 
changes in surface curvature, such as occur in a con- 
densate film near the tips and roots of fins, large 
pressure gradients are set up which have a significant 
effect on the condensate motion and hence on the film 
thickness. For condensation on finned tubes this is an 

important aspect of the mechanism of heat-transfer 
enhancement. 

Even for the relatively straightforward two-dimen- 
sional case of the horizontal tube shown in Fig. 2, 
where the velocity vectors for the condensate flow and 
gravity are in the same plane, considerable complexity 
arises when the surface tension pressure gradient is 
included. The pressure gradient in the film in the direc- 
tion along the surface is given by 

(13) 

where r, is the radius of curvature of the surface of 
the condensate film, given by 

; r: + (dF/‘/do) 2 ). ;, z 
r. -- 
‘ ?‘+2(d~/dB)“-r”d’~/d0’ 

where f= r+S. 

(14) 

Using the same approximations as in the Nusselt 

ti.e. an arc touching both fin flanks and the interfin- 
tube space at the fin root diameter when 

Y, = ((h/2) -h tan p)( I+ tan (8/2))/( 1 -tan (fi/2)). 

FIG. 2. Condensate film on a horizontal tube. 

theory, but including the pressure gradient term in 
the momentum balance, the following fourth-order 
equation for the local condensate film thickness is 

obtained. 

$ A3sin&JA3g 
{ I =F (15) 

where 

A = S/r 

J = ojpgr’ 

K = pkAT/r3pbghf, 

and 

f’= 
(l+A)‘+2(dA/d@‘-(l+A)d’A/dU’ 

((1 +A)?+(dA,d@‘; 3’?------’ (16) 

It may be seen that, when gravity dominates over 
surface tension, i.e. J+ 0, the Nusselt first-order 
equation for the film thickness is recovered. 

HEAT-TRANSFER MODELS INCLUDING 

SURFACE TENSION 

All treatments of this problem to date have been 
based on a two-dimensional approach. Either gravity 
has been neglected when considering the surface ten- 
sion driven radially inward flow of condensate on the 
fin flank, or only the radial component of gravity 
has been included. In some cases (e.g. Karkhu and 
Borovkov [lo], Rifert [I I], Webb et al. [12], Adamek 

and Webb [13]) the problem has been greatly simplified 
by assuming a uniform pressure gradient along the fin 
flank, with further assumptions about the curvature 
of (and hence pressure in) the film at the fin tip and 
fin root. A more accurate treatment by Honda and 
Nozu [14] (who solved equation (15) numerically. 
using the radial component of gravity and with 
assumptions about the film curvature at the fin tip 
and root to specify a sufficient number of boundary 
conditions). indicated that the pressure gradient on 
the fin flank was far from uniform. As expected on 
physical grounds. a sharp pressure peak occurs near 
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the fin tip due to the convex curvature of the con- 
densate film, and a pressure minimum occurs at the 
fin root where the film surface is concave. Along much 
of the fin flank, changes in curvature and hence in 
pressure, are smaller. 

The present author has long held the view that there 
exists a need for an approximate model, in the form 
of an algebraic expression similar to that of Beatty 
and Katz [4], but including surface tension effects. 
Such an approach is given below. 

DIMENSIONAL ANALYSIS 

Following the procedure which has been used suc- 
cessfully in single-phase convective heat transfer prob- 
lems, dimensional analysis may be used to establish 
the relevant dimensionless parameters and a simple 
form assumed for the relationship between them. For 
the Nusselt problem, where the condensate flow is 
influenced only by gravity and viscosity, and where 
the surface geometry is characterized by a single linear 
dimension (e.g. diameter of horizontal tube or height 
of vertical plate) we have 

where 

6 =f(v,&,P,X) (17) 

6 = mean condensate film thickness, i.e. for pure 
conduction in the film q = kAT/6, where q is 
the mean heat flux for the surface, 

V = mean volume condensation flux per area of 
surface, 

bg = net downward force per volume, 
p = viscosity of condensate, 
x = linear dimension. 

Dimensional analysis then gives 

;=a 5. ( > (18) 

As in many convective heat-transfer problems we 
take, for the form of the function in equation (18) 

where C and n are constants. 
Noting that 

and 

4 
li=h,p (20) 

kAT 
q=7 (21) 

equation (19) may be compared with Nusselt theory We provisionally propose, for equation (28), the 
which gives simple form 

for the horizontal tube, and 

6 1 pv ‘I3 -=- ( > L 0.9434’3 &jS (23) 

for the vertical plate. 
Anticipating that, when treating the interlin tube 

surface for a finned tube, we shall need the mean 
condensate film thickness for that part of a horizontal 
tube between the top and the angle 0 from the vertical 
(this arises because condensate retention obscures the 
lower part of the inter-fin space) we note that the 
Nusselt theory gives 

where 

t(e) = -L 2 1!3Q4/3 

(24) 

I 
1 

413 

d0 

(25) 

((0) is given, approximately. by 

((0) = 0.874+0.1991 x lo-*8-0.2642x lo- ‘0’ 

+0.5530x 10~203-0.1363 x lo-‘04. (26) 

Equation (26), obtained by fitting numerically- 
obtained values from equation (25), is accurate to 
within 0.15% except near 0 = x where the maximum 
error is 0.5%. 

The fact that dimensional analysis and the assumed 
form of equation (19) gives the correct result for the 
Nusselt problem (apart from the numerical values of 
two constants) gives us confidence in applying the 
same method when surface tension is important. If we 
replace the gravity term in equation (17) by the surface 
tension. cr, we obtain from dimensional analysis 

6 PV -=i(-> X u . 
(27) 

For condensation on a surface such as a fin tip, fin 
flank, or the surface of tube between fins, both surface 
tension and gravity are important and the character- 
istic length is different for each. For this case dimen- 
sional analysis suggests 

where x, and x2 are appropriate characteristic dimen- 
sions. 
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(29) 

where A and B are constants and .x$ and s, are appro- 

priate characteristic lengths for gravity and surface 
tension driven flows. respectively. When 0 is set to zero, 
equation (29) reduces, with the appropriate values of 

A and .ygr to equation (22). (23) or (24). When g is set 
to zero, equation (29) gives, for equation (27) 

(30) hv = & J: h * dx = shaded area / AB = hg / sine 

Since 6 x 1/‘/j, as in the Nusselt theory, equation (29) 
leads to an expression for the ‘enhancement ratio’ 
which is independent of AT. as has been found exper- 

imentally to be approximately true. 
It is interesting to note that, for a given con- 

densation rate, the film thickness depends on the first 
power of the linear dimension for surface tension- 
driven condensate flow (see equation (30)), while for 
gravity-driven Bow the film thickness varies as the 
linear dimension raised only to the power l/3 (see 
equations (22) and (23)). We therefore anticipate that. 
with decreasing dimensions (fin height. fin thickness, 
interfin tube space) the effect of surface tension on 
heat-transfer will increasingly dominate over that of 
gravity. This is illustrated by equation (29). 

h 

” 

= shaded area/ (CE + DE) = h0 / (2 -sir@) 

FIG. 3. Approximation for mean vertical height of fin. 
ENHANCEMENT RATIO FOR FINNED TUBE 

. . 
When applying equation (29) to the fin tip, where 

there is no retained condensate, A = 0.728“, xg = do. 

x,, = t and B is an unknown constant B,. For the For the fin tip : 
unflooded part of the tin flanks, we take A = 0.9434. 
xg = h,. the mean vertical fin height. As indicated in 
Fig. 3, for low fins, h, may be approximated by 

h, = h$/sin 4 for 4 < n/2 (3 1) For the fin flanks : 

h, = h@/(2 - sin 4) for 4 > n/2. (32) 

For the fin flanks s, = h and B is an unknown 

constant B,. For the unflooded part of the tube space 
between fins A = (t(4))‘, sg = d,, x, = s and B is an 
unknown constant B,. Different constants, B, are used 
for the fin tip, flank and interfin tube space because 
the boundary conditions for surface tension drainage 
are different for three surfaces (see Fig. 4) and the 
direction of the surface tension pressure gradient in 
relation to that of gravity is not the same in all three 
cases. 

Using equations (20) and (21), with the values of 
A, B, xg and X, given above and neglecting tem- 
perature drop in the fins. equation (29) can be re- 
arranged to give the mean surface heat flux for the fin 
tip, fin flanks and interfin space. 

3) 

For the interfin tube space : 

Assuming no heat transfer to the ‘flooded’ and 
blanked parts of the fin flanks and interfin tube space, 
the heat-transfer rate to a tube length of one fin pitch 
(fin tip, two fin flanks, interfin tube surface) is given, 
for rectangular section ,fins (s = b, b = 0). by 

Qf = nd&, 

+ 9 
T[ 

(1 -fr)dd: -4’) q 
2 f 

+ (1 _,L)nd sq 
c (36) 
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C D C D 

FIG. 4. Sketch of surface tension induced flow and pressure distributions on fin surfaces. 
* 

The heat-transfer rate to the same length of a smooth where 
tube with diameter equal to the fin root diameter is 

es = Mb + f)Glooth (37) 

The Nusselt theory gives 

qsmoo,,, = 0.728 phfg;A’3 F 
> 

II4 
. (38) 

r 

Then, using equations (33)-(38) the enhancement 
ratio for the same AT, 

&AT = 

may be written 

QrlAT _ QF 
QslAT Qs 

(39) 

Gs=$ 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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The following points may be noted. 

1. The enhancement ratio given by equation (40) is 
independent of AT. 

2. The only thermophysical property in equation 
(40) is the ratio rr/p. 

3. The three unknowns B,, Bf and B, remain to be 

found empirically. 
4. Since conduction resistance in the fin has been 

neglected. the validity of equation (40) may be 
expected to decrease with decreasing thermal con- 

ductivity of the tube material and with increasing 
‘slenderness ratio’ (h/t) of the fins. 

5. Equation (40) gives the heat-transfer coefficient 
for a finned tube (based on the smooth tube area with 
fin root diameter) divided by that for a smooth tube 
with diameter equal to that at the fin root. for the 
same AT. 

6. When acos~/pgbd, > 0.5, i.e. the argument in 
equation (8) exceeds unity, the interfin space is ‘fully 
flooded’ and 4 should be set to zero. 

DETERMINATION OF THE CONSTANTS 

It is difficult to decide which data should be included 
in the determination of the constants. Different inves- 
tigators have used different methods to determine the 
vapour-side coefficient (direct measurement of wall 

temperature or from overall temperature difference 
using pre-determined coolant-side correlation or some 
form of ‘Wilson Plot’). In some cases significant 
vapour velocity may have been present. Moreover, sa7 

is not strictly independent of AT. 
When determining the unknown constants by mini- 

mization of the sum of squares of residuals (measured 
minus calculated values) of a&,., appropriate weighting 
factors should be employed according to the accuracy 
or reliability of the various data sets. At this point no 
attempt has been made to obtain definitive values of 
the constants. Minimization procedures have been 
carried out using data for copper tubes with rec- 
tangular section fins (with sharp-edged fin roots) 
which were both readily available and considered to 
be of high accuracy. These data were obtained from 
seven investigations (identified in Table I ) in which 
four different condensing fluids were used with 41 
different tube/fin geometries. No weighting factors 
were used. 

Curve fits were also done with the constants B,, B,. 
and B, set equal and when allowed to take different 
values. The constants were determined by minimizing 
the sum of squares of relative residuals of Ed,- (one 
minus ratio of measured to calculated value). The 
standard deviations were never more than 23%. The 
approximate nature of equation (40) and the fact that 
the constants B,, Bf, and B, did not generally differ 
greatly when found separately, led to the decision to 
set these constants equal. Partially to account for the 
fact that condensate drainage from the fin flanks 
would affect both gravity and surface tension con- 
tributions to the heat transfer at the interfin tube space 

Table I. Key to data in Figs. and 6 

Symbol Reference Fluid 

0 

I;; 
G 
a 
# 

t 
q 
0 
0 

n 
A 
+ 
l 
* 
< 

Figs. 5 and 6 
Briggs et al. [ 171 
Briggs et al. [17] 
Briggs ef al. [ 171 
Wen [18] 
Wen [18] 
Wen [18] 
Wanniarachchi et al. [ 191 
Wanniarachchi et al. [20] 
Marto rr al. [21] 
Michael et al. [22] 
Honda et al. [5] 
Honda et al. [5] 

steam 
RI13 
glycol 
steam 
RI13 
glycol 
steam 
steam 
RI13 
RI13 
R113 
methanol 

Fig. 6 
Honda et al. [5] RI13 
Honda ef al. 151 methanol 
Carnavos cl 6,:[23] Rll 
Webb et al. II 21 RI1 
Katz et ul. [24] 1 RI2 
Beatty and Katz [4] various 

a ‘lead’ constant B, was introduced in the last term of 

equation (40), thus 

T_ 

’ 

+ ~ (1 -J~)B, (h~~j T,. (47) 

(Note that cos /I has been inserted in the denominator 
of the second term in equation (47) to extend the 
applicability to trapezoidal section fins.) 

Although on physical grounds there is no reason to 

expect the tip, flank and interfin space constants to 
have the same value, and the lead constant, B, might 

have been expected to be less than unity, an excellent 
fit was obtained with B, = BF = B, = 0.143 and B, = 
2.96. The standard deviation was 12.4%. 

COMPARISON WITH EXPERIMENTAL DATA 

Figure 5 compares measured and calculated (equa- 
tion (47) with the above constants) values of sAr for 
the data used to determine the constants. It may be 
seen that virtually all of the data are represented to 
better than 20% by equation (47) with the constants 
given above. In Fig. 6 data from investigations not 
used in obtaining the constants have also been 
included. In the case of the data of Webb et al. [12], 
where significant fin root curvature was present, fr 
andf, have been set to zero. The relatively recent data 
of Sukhatme et al. [15] have been omitted since the 
fins were very thin (0.06 < t (mm) d 0.13) and conse- 
quently the thickness was subject to significant uncer- 
tainty, while, for most of the data, the tubes were fully 
flooded when only the fin tips contribute to the heat 
transfer. Under these conditions the predictions are 
susceptible to large uncertainty. It is evident that equa- 
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4 6 8 

EAT (equation (47)) 
4 6 8 

EAT (equation (47)) 

Fig. 5. Comparison of equation (47) with data used to deter- FIG. 6. Comparison of equation (47) with all data. (Symbols 
mine constants. (Symbols defined in Table 1.) defined in Table 1.) 

tion (47) is in good agreement with most of the avail- 
able data. 

Figure 7 shows a comparison between experiment 
and equation (47) for the dependence of aAT on fin 
spacing (other dimensions fixed) for copper tubes and 
three condensing fluids. The general agreement, and 
particularly the prediction of the optimum fin spacing, 
is satisfactory. The slope discontinuity at low fin spac- 
ing occurs when ei = 0, i.e. when the whole of the 
interfin space is flooded and only the fin tip con- 
tributes to the heat transfer. For smaller fin spacings 
only the first term in equation (47) is used and E&+ 
increases with increasing fin tip area. 

Figure 8 compares calculated and experimental 
values of ~~r for three fluids and for copper tubes with 
various fin heights but otherwise identical fin and tube 
geometry. As in Fig. 7, agreement between experiment 

and equation (47) is generally satisfactory. The slope 
discontinuity at small fin heights occurs when the fin 
height is such that fr = 1. For lower fin heights there 
is no heat-transfer contribution from the fin flanks. 

Figure 9 shows excellent agreement between equa- 
tion (47) and experimental data giving the dependence 
of aAT. on fin spacing for a larger diameter tube and 
for two fluids. 

Figure 10 compares calculated and experimental 
values of a*r for copper tubes with different fin thick- 
ness but otherwise the same geometry. The agreement 
is good for Rl13 but for steam the calculated values 
are around 25% lower than the measurements. For 
this fluid and geometry (fin spacing, fin height, 
tube diameter) agreement with theory was least satis- 
factory of all the data used in determining the con- 
stants. 

8 , 
h=1.59mm 

7 _ ,/-.;_._. Rt 13 t = 0.5 mm 
- ;*n d, = 12.7 mm 

6- : 
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p ; ,.~~~~~~~~~i 
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0 0.5 1.0 1.5 2.0 2.5 

s (mm) 

FIG. 7. Dependence of Ebb on fin spacing. Comparison of equation (47) with data of Wen [18] and 
Briggs et al. [17]. 
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FIG. 8. Dependence of .sAT on fin height. Comparison of equation (47) with data of Wen [18]. 
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FIG. 9. Dependence of .sAT on fin spacing. Comparison of equation (47) with data of Wanniarachchi et al. 
[19, 201 and Marto et al. [21]. 
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FIG. 10. Dependence of cd7 on fin thickness. Comparison of equation (47) with data of Wanniarachchi 
et al. [19, 201 and Marto ef al. [21]. 



Condensation on low-finned tubes 875 

CONCLUDING REMARKS 8 

1. Equation (47) agrees satisfactorily with most of 
the available experimental data for condensation of 
various fluids on low-finned copper tubes. 

2. In design calculations, a low-finned tube should 
be treated as a smooth tube with the fin root diameter 
and a vapour-side, heat-transfer coefficient equal to 
the plain tube value (e.g. Nusselt) multiplied by cAr as 
given by equation (47). To obtain the heat-transfer 
coefficient based on the smooth tube area with di- 
ameter d,, the appropriate ratio by which to multiply 
the heat-transfer coefficient for a smooth tube of 
diameter do is cAT(dr/do)3’4. For instance, when eval- 
uating the advantage of re-tubing a smooth-tube con- 
denser with finned tubes having diameter over fins 
equal to the OD of the smooth tubes, one would 
calculate as for smooth tubes but using a vapour- 
side, heat-transfer coefficient equal to the smooth tube 
(with diameter do) value multiplied by &AT(dr/d,,)3’4 
with .aAT given by equation (47). 

3. For tubes where ‘fin efficiency effects’ become 
significant. an iterative scheme has been developed 
(Briggs and Rose [16]). 

9 
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11. 

12. 

13. 

14. 

15. 
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